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DYNAMIC CRACK CURVING - A PHOTOELASTIC EVALUATION

by

M. Ramulu* and A. S. Kobayashi**

A dynamic crack curving criterion, which is valid under combined modes

I and 11 or mode I loading and which is based on either the maximum circum-
ferential stress or minimum strain energy density factor at a reference

distance of ro = T ( (cc1 ,c2) crack deformation, is developed.
Directional stability of a mode I crack propagation is attained when

ro>rc, where rc for Hmalite-100 was de.42mined from dynamic photoelastic

experiments. In the presence of mode II crack deformation, positive remote

stress component, i.e., 0ox>O and negative remote stress component, i.e.,
0ox<O, was found to enhance and supress crack curving, respectively.

*Graduate student, University of Washington, Department of Mechanical

Engineering, Seattle, WA 98195

**Professor, University of Washington, Department of Mechanical Engineer-

ing,Seattle, WA 98195
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INTRODUCTION:
Crack extension and fracture criteria under combined tension and shear

loading are based on either energy or maximum circumferential stress criteria.

The maximum circumferential stress,506 , criterion was first used by Erdogan and

Sih [1], for predicting the direction,4, of an angled crack. Williams and

Ewing [2] extended this theory by incorporating the second order term of Q in

the Williams eigenfunction expansion. Finnie and Saith [3] corrected an over-

sight in the above angle crack analysis and obtained an improved agreement be-

tween predicted and experimental data. Streit and Finnie [4] further proposed a

crack stability model where directional stability of a mode I crack propagation

is maintained when a characteristic distance of ro from the crack tip satisfies

ro>r c , where rc is a critical distance ahead of the crack tip. Cotterell and

Rice [5] derived the necessary condition for a slightly curved, quasi-static,

mixed mode crack growth where stability of crack growth was also governed by

*T " Karihaloo et al. [6], recently showed that crack curving can occur without

kinking under vanishing TO'x and mode II stress intensity factor, but with non-

vanishing derivative of K,, with respect to the crack length.

As for the energy approach, Hussain et al., [7], Palaniswamy and Knauss

[8], Gupta [9], Wu [10], and Nemat-Nasser et al. [11-12], among others, predict-

ed the direction of a kinked crack based on a maximum strain energy release rate

criterion. Sih [13], on the other hand, proposed the S-theory where the

direction of crack kinking coincides with the direction of the minimum strain

energy density. Theocaris and Andrianopoulos [14], recently modified the

S-theory by designating its mean value, T, the critical quantity for crack
F]

initiation, under mixed mode crack tip deformation.

The above papers all relate to quasi-static crack extension. As for dynam-

ic crack curving criterion, Yoffe [15] and Sih [16], used the maximum dynamic

circumferential stress theory and minimum strain energy density theory, respect-

ively to explain crack branching phenomena.
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The objective of the present study is to derive a dynamic crack curving

criterion applicable to both mode I and combined modes I and II crack tip de-

formation. To this goal, dynamic extension of two static crack curving criteria,

that is the maximum circumferential stress criterion and the minimum strain

energy density criterion at a critical distance i', was considered. The devel-

oped theoretical relations were evaluated numerically and the influence of OX

and crack velocity on crack curving direction were deduced. Crack curving

angles predicted by the two dynamic crack curving criteria were then compared

with experimental results, obtained from past dynamic photoelastic investiga-

tion.

DYNAMIC CRACK CUJRVING CRITERIA

Elasto-dynamic Crack Tip Stress Field

The dynamic crack curving criteria, are derived from the near field, mixed

mode elasto-dynamic state of stress associated with a crack tip propogating at

constant velocity. This dynamic state of stress is given by Freund (17,18) in

terms of local rectangular and polar co-ordinates of (x,y) and (r,9), respec-

tively, with origin at the crack tip, and the mode I and II dynamic stress

intensity factors, K, and Kii*, respectively. The authors [191 have added to

Freund's near field, dynamic state of stress the second order term of a. which

is acting parallel to the direction of crack extension. This dynamic singular

crack tip stress field under mixed mode loading for small C values differs from

the corresponding static stress field in that the largest principal singular

tensile stress acts parallel to the x-axis, a fact which not only contributes to

crack curving but also to dynamic crack branching. Furthermore, this region

*The superscript "dyn" to identify dynamic stress intensity factor will not be

used in this paper, since all quantities refer to dynamic values.
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ahead of the running crack where lO-x >( ' increases with increases in crack

speed and ox even under pure mode-II crack tip deformation [19]. This

inevitable involvement of U' x forms the basis of incorporating Uox in the

dynamic crack curving criteria presented in this paper.

Maximum Circumferential Stress Theory

The angle,9 , at which circumferential stress,( , is maximum, can be ob-
C

tained from the following,

where the addedTO'> 0 is to assure fracture under tensile state of stress.

Equation (1), when evaluated in conjunction with a pure mode I dynamic crack tip

state of stress will yield a transcendental relation between the critical values

of and r. Furthermore, by settingS = 0 in Equation (1), we obtain
a " = 5/ V~,(: _ 2 " (2a)

12 97T' OR OJ
*where Cc)1 c~ (2-s-3 (1, 4 (+3 5)- 6,1,5 Cs, -,.) (2 b)

8~ Cc)~ ~ I(2c)

2- 
(2d)

and c, c, and c2 are the crack velocity, dilatational wave velocity, and

distortional wave velocity, respectively. It can be easily shown that for zero

crack velocity or c = o, Equation (2a) reduces to Streit and Finnie's solution

[14] of ro  -

o aer 
L.",
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Figure 1 shows the velocity effect on ro which is plotted in a non-dimen-

sional for ofro OR where the dynamic r0 is always less than the corres-

ponding static ro at experimentally observed crack velocities of 0 < c < 0.33

and is insensitive to the sign of ox" The teminal crack velocity of c/c I v:

0.325, in Figure 1 where ro 
= 0 concides with the terminal velocity predicted by

Yoffe [15].

Minimum Strain Energy Density Theory

According to this theory, the crack will extend to the location of the

minimum strain energy density factor, Smin' or

0 at 0=& (3)

The intensity of the strain energy density, S, for the state of plane strain can

be written as

+ y(4)

where E and ) are the modulus of elasticity and Poisson's ratio, respectively.

Substituting the dynamic mixed mode crack tip stresses into Equation (4) and

then into Equation (3) yields

By setting Poisson's ratio )= l/ I ( = 0 -as a crack velocity of c-* o in

Equations (5), the static angular predictions in Reference [13) are recovered.

When a non-vanishing second order term of r is considered in Equation (5)



Page 5

yields four 8.values, a pair for Sma and another pair of Smin for given values

of c, Kii/K I, ro and x Only the negative root of 4 corresponding to positive

KII/Kl and the positive root of4 for negative KII/K1 , to the tensile loading

are of interest [13]. Numerical values of these will be discussed in the

following section.

Actual evaluation of Equation (3) will show that curving of a straight

crack propagating at the lower velocity can be considered only by incorporating

the nonsingular term ofq- in the minimum strain energy density criteria. Such

possibility of crack curving without KII values and under the minimum strain

energy criterion has not been considered by others.

Comparison of Maximum oo-and Minimum S Criterion

Figure 2 shows the predicted crack curving angles for crack velocities,

c/c1, from 0 to 0.25 by maximum stress and the minimum strain energy density

criteria when 0ox = 0. Without the second order term, both criteria predicted

the same crack curving angles for much of the crack velocity range. Although

the crack curving angle at higher crack velocities are significant for lower

crack velocities of c/c1<0.15, the predicted crack curving angle, which is

referred to as fracture angle from hereon, is almost constant and is in close

agreement with corresponding static fracture angles.

The effects of the non-singular term of7ox and reference radius ro in

predicting the fracture angle by both maximum 0'99and minimum S theories at

various crack velocities are shown in Figure 3 forP = 1/3, and KII/KI = -0.1,

andQox/Ki = -1.0 and 1.0. Note that fracture angle for negativeo x , are much

smaller than those with positive 5ox" Also, larger ro results in larger changes

in the fracture angle. For larger values of ro the differences in predicted

fracture angles due to maximum circumferential stress theory and minimum strain
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energy density theory are larger at higher crack velocities. This importance of

r value in characterizing the direction of the fracture angles is discussed in
0

Reference [14].

EXPERIMENTAL VERIFICATION

Dynamic Isochromatics:

For a single, pure mode-I or combined modes I and II crack propagating at a

constant velocity, the dynamic crack tip isochromatic patterns together with the

predicted path are shown in Figure 4. Changes in the remote stress, -"x ,

results in backward or forward tilting of the dynamic isochramatics. For a

given ( x' the change in the sign of KI, results in a mirror image of the

isochronatics. Detailed discussion of the changes in dynamic isochromatics with

variations in K11 /KI and Qx/KI can be found in Reference [19].

Data Reduction Procedure

Experimentally determined dynamic isochromatics surrounding a running crack

often exhibits moderate unsymmetry. Such photoelastic patterns were heretofore

considered experimental abnormalities and were ignored by averaging the unsym-

metric patterns during the data reduction process. Careful postmortem inspection

of the fracture specimens, however, show that the higher magnitudes of ox of

isochromatics and slightly unsymmetric isochromatics are often associated with

slightly curved crack patterns. With the development of a data reduction

procedure [193 for evaluating dynamic KII together with KI and ox values, it

became possible to investigate the above criteria by extracting K, and KII and

rox from the previously recorded dynamic isochromatics surrounding running crack

tips of curved cracks. An optimization method developed by the authors based on

the overdetenninistic least square procedure was also used to extract the

dynamic three parameters KI, KII and qox from the recorded dynamic photoelastic

pattern surrounding a running crack [19,20).
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The dynamic crack curving criteria developed for pure mode-I loading con-

ditions require accurate determination of K1 and ' ox Accuracy of the data re-

duction procedure used in this investigation was verified by using the above

data reduction procedure to calculate K, and q'ox from previously generated

isochromatics generated by three parameters of KI, OX'o and A3 with KII = 0

[21]. The recovered two dynamic parameters K, ando'x agreed within + 0.5% and

+ 5%, respectively, with the given results. This series of numerical experi-

ments showed that the two parameter characterization procedure involving KI and

* should describe reasonably well the stress field in the vicinity of a running

crack tip.

The crack curving angle was measured along the crack path by averaging the

measured crack curving angle on front and back surfaces of the fractured speci-

men since the crack surfaces of some of the curved cracks were not perpendicular

to the specimen surfaces. The maximum variation between the front and back

crack curving angles was about 3 degrees for severely curved cracks. Similar

differences in out-of-phase crack curving were also observed by Williams et al.,

in their PMMA specimens [2].

Results

Figure 5 shows three frames out of a 16 frame dynamic photoelastic record

of a curving crack in a Homalite-100 dynamic tear test (DTT) specimen of 9.58 mm

(3/8 in) thick, 88.9 x 400 mm (3 1/2 x 15 in). This beam with a blunt initial

crack of 6.4 m (7/32 in) in length was impact loaded by a drop weight of 1.48

kg (3.25 lb) [22]. The crack emanated from the blunt saw-cut crack and propa-

gated through much of the height of the beam prior to curving near the region of

impact loading. Further details of the experimental setup, crack velocity meas-

urements and dynamic calibration of the Homalite-100 material used are found in
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Reference [22]. Figure 6 shows KI , Kill,'x and ro which is computed by Equa-

tion (2), obtained from the dynamic photoelastic pattern preceding and immedi-

ately after the crack curving in Figure 5. K11 is negligible in comparison to

K, and at the point of instability and pronounced fluctuation in ox is noted.

After crack curving KII and T x increased while KI and crack velocity dropped

rapidly. r0 was close to 1.5 mm throughout crack propagation and reached a

minimum value of rc= 1 mm during the onset of crack curving.

Figure 7 shows a slightly curved crack and the associated KI, Kil, Q"ox and

r o in a fracturing 9.53 mm (3/8 in) thick, 254 x 254 mm (10 x 10 in) single-

edge-notch (SEN) Hamalite-100 specimen [23]. Gradual increase and decrease of

K, and a very small KII with a rapid fluctuation of0 Ox and ro are noted. Three

SEN results were evaluated where K, reached a maximum value, KII was negligible

and was increasing prior to crack curving. At the onset of instability, a

sudden drop in KI and larger Uox with KII = 0 are observed. r o dropped sharply

to an average value of 1.5 mm at the point of instability. This minimum r o

value will be referred to rc which will be found to be a material parameter

associated with dynamic crack curving. The small negative Kil, which appeared

immediately after crack instability, resulted in a positive angle of crack

crving. This result is not only in agreement with the analytically predicted

angles in Figure 3 but is also in agreement with similar observation in crack

curving under stable crack growth conditions [24]. The rapid oscillations of r o

in all the three SEN specimens appeared to be related to the rapid but opposing

oscillations inTox .

Figure 8 shows a curved crack and the associated, KI, KiI,-x and ro in a

Homalite-100, wedge-loaded, rectangular double cantilever beam (WL-RDCB)

specimen of 9.6 mm (3/8 in) thick and 76.2 x 152.4 mm (3 x 6 in) with a blunt

initial crack of le-qth 2.36 rr (0.093 in). Experimental details of this series
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of tests can be found in Reference [25]. Fluctuations in dynamic fracture para-

meters KI, KII, 70oX and r0 is noted all along the curved crack path. The crack

curved continuously without any kinks and is a characteristic fracture path of

DCB specimens.

Figure 9 shows five frames out of a 16-frame dynamic photoelastic record of

a curving crack in a 9.53 mm (3/8 in) thick, 254 x 254 mm (10 x 10 in) Hana-

lite-100 single edge notch (SEN) specimen loaded under fixed gripped tension.

The crack emanated from a small precrack 150Aksec after impact by a flat-nosed

projectile. The severe stress wave reflections in this specimen caused the

crack to curve continuously in a zig-zag manner. Details of this experiment can

be found in Reference [26]. Figure 10 shows the corresponding KI, KiI,-ox and

r variations associated with the unsymmetric dynamic isochranatics in this

test. Severe stress wave loading caused the crack to curve immediately after

propagation and rc is about 1.35 mm at this crack kinking. Throughout crack

propagation,-" x changed signs and is related to the zig-zagged crack path.

Fracture angles of curved cracks measured in nine dynamic photoelas' city

tests and the corresponding fracture angles computed by the maximuizn and

minimum S theories are sumnarized in the Table 1. Remarkable agreements in

experimentally measured and numerically computed results by both the theories,

using an experimentally measured rc . 1.3 mm for Homalite-lO0 are noted. Crack

curving in our experiments for mode I, crack propagation ranged between + 250 to

a minimum of 20 for severe to moderate curving.

DISCUSSIONS

The closed form elasticity solution for a circular arc crack under uniform

stress field provides a siimple check on the accuracy of using the near field

solution of a straight crack in the results cited above. The static solution

given by Panasyuk and Brezhnitskiy [27] in the vicinity of a circular arc crack
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with an includpd angle 20( differ with straight crack solution only by a multi-

plication factor of

K curved K straight cosO(/2/(l+Sin 2(/2) (6a)

KIIcurved =KIIstraig ht sinot/2/(1+Sin
2 /2) (6b)

Scurved - 5-straight Sin 2o/2/(l+Sin( V2) (6c).
ox ox

where the superscripts "straight" and "curved"refer to crack tip parameters

associated with a straight and curved crack, respectively. As an estimate of

possible errors involved in using a straight crack solution to evaluate the

fracture parameters of a curved crack were determined by least square fitting

the above exact static solution of a curved crack and the corresponding solution

for a straight crack to the two extreme curved cracks associated with the last

data points in Figures 6 and 8. The resultant KI, KII andTOx of the straight

crack solutions are within 10%, 28% and 6%, respectively of the corresponding

* solutions for circular arc cracks of( 25 and 280. Thus, possible error

introduced by using a second order dynamic crack tip state of stress of a

straight crack in place of a curved crack should be negligible for most of the

curved crack problems ofC( = 5e-,100 in this investigation.

The developed dynamic crack curving criterion shows the largeox contrib-

utes to crack instability and is in agreement with Benbow and Roesler's conclu-

sion involving static experiments [28). Cotterell [29-31] referring to Williams

analysis [32], showed that the crack path will be unstable whenqox is positive.

The above static crack stability criterion [28-313 correlates well with the

experimental results of DCB specimens but cannot explain dynamic crack curvings
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in fracture specimens of SEN, CT, and DTT whereox is negative. The proposed

criterion for the directional stability of a propagating crack is independent of

the sign of the ox, and is thus applicable to all crack curving data considered

in this paper.

As shown in Figure 3 the influence of non-singular stress is more pronounc-

ed for moderate values of r0 irrespective of the sign of K1I/KI. This result

re-emphasizes the importance of the non-singular stress termo x , which, when

neglected, can lead to inaccurate results as observed by Tirosh [33].

Considering the fact that dynamic photoelasticty experiments cited in this

paper were conducted by four different investigators over a period of ten years

with different shipments of Homalite-lO0, the consistent results of rc M 1.3 mm

is noticeable. In a critical review on rc associated with the minimum S criteri-

on of crack curving, Theocaris and Andriaopoulos (14) also determined experi-

mentally rc = 1.3 mm (0.05") for polymethylmethacrylate.

Finally, the crack curving criterion by Karihaloo et al. [12] requires that

KII be known immediately before and after crack curving. The lack of sensitiv-

ity in this analysis precluded precise variations of the very small KII before

or after crack curving and thus this crack curving could not be checked.

CONCLUSIONS

1. A dynamic crack curving criterion based on the directional stability of a

running crack under pure mode-I loading is developed.

2. Dynamic fracture angle under pure mode I and mixed mode I and 11 conditions

can be predicted by using either the maximum circumferential stress or the

minimum strain energy density theories with the non-singular stress term J-x.

3. Positive oox always enhances the crack curving and negative ox reduces the

fracture angle irrespective of the sign of KII/K I.

mom
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4. Experimental results with and without KI, proved that rc is a material

constant. The critical value of Hcmalite-100 is rc = 1.3 mm (0.05 in).
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TABLE I
SUMMARY OF EXPERIMENTAL AND

THEORETICAL RESULTS

Total Number of Experiments: 9

Type of Fracture Specimen: OTT, SEN, WL-RDCB

Number of Data Points: 81

Crack Velocity, c/c1 : 0.03 to 0.21

KI (MPa m) 0.50 to 1.59

KII/K I  -0.22 to 0.18

/K -2.89 to 4.04

Experimental Fracture Angle

Associated with Crack Curving -200 to 260

Theoretical Prediction of

Fracture Angle -200 to 250

rc (mm) 1.0 to 1.5

I.
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(a) FIFTH FRAME 100 /. SECONDS

. . A . . .............

(b) EIGTH FRAME 130 u.SECONDS (C)TENTH FRAME 160. SECONDS

FIG. 5 .TYPICAL DYNAMIC ISOCHROMATICS OF A CURVED CRACK HOMOLITE-
100 NOTCH BEND SPECIMEN NO. 6-C05i074.
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FIG. 8. MODE I AND MODE 37 DYNAMIC STRESS INTENSITY FACTORS OF A CURVED
CRACK IN A WEDGE LOADED RECTANGULAR DOUBLE CANTILEVER SPECIMEN,
HOMOLITE - 100, SPEC IMEN NO. L7B -051573.
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(a) SEVENTH FRAME 150 /.LSECONDS (b) TENTH FRAME 255/L. SECONDS

(C)TWELFTH FRAME 315 /.SECONDS (d) FOURTEENTH FRAME 370SECONDS
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FIG. 9 .TYPICAL DYNAMIC ISOCHROMATICS OF A CURVED CRACK. HOMALITE-IO0
EDGE- CRACKED TENSION PLATE IMPACTED BY A FLAT NOSE PROJECTILE,
SPECIMEN NO. 21-W090771.
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